CARBON-13 NMR SPECTRA OF SOME ent-ATISENE DERIVATIVES

Benjamín Rodríguez^{*}, Antonio Alemany and Mariano Pinar Instituto de Química Orgánica, C.S.I.C., Juan de la Cierva, 3, Madrid-6, Spain

A recent investigation¹ of the roots of <u>Margotia gummifera</u> (Desf.) Lange yielded a novel tetracyclic diterpenoid, gummiferolic acid (\underline{l}). The availability of a number of <u>ent</u>-atisene derivatives obtained from \underline{l} prompted us to undertake a ¹³C NMR study of these compounds.

Until now, only ¹³C NMR data of some <u>ent</u>-atis-16-ene alkaloids² and two synthetic <u>ent</u>-atis-13-ene diterpenoids³ have been reported. This paper presents (Table 1) the δ_{C} of the parent hydrocarbon <u>ent</u>-atis-16-ene (2), their C-7 and/or C-19 oxygenated derivatives 3-6 and the Δ^{15} isomer 7.

The spectra were determined in CDCl_3 solution at 25.19 MHz by using a pulsed Fourier transform system with proton noise-decoupling. The assignments were made with the aid of off-resonance-decoupled spectra and selective decoupling experiments, and further based on comparison of pairs of compounds, consideration of β , γ and δ substituent effects, acetylation shifts, general chemical shift arguments and literature data on related structures^{2,3} and reported δ_C values of tri- and tetracyclic diterpenoids⁴.

Inspection of Table 1 shows that there is a good agreement between the δ_{C} values of the ring A and C-6, C-7, C-18 and C-19 carbon atoms of all the compounds and those previously reported for <u>ent-kaur-16-ene</u> and <u>ent-beyer-15-ene</u> and their derivatives⁴. The chemical shifts of rings C and D carbon atoms (included C-8 and C-9) are also in agreement with the expected values obtained from <u>ent-kaur-16-ene</u> or <u>ent-beyer-15-ene⁴</u> taking into account the change of the bicyclo-[3.2.1]-octane moiety into the bicyclo-[2.2.2]-octane system⁵ of the ent-atis-16-ene.

The diamagnetic shift ($\Delta\delta \simeq -3.6$ ppm) showed by the C-20 carbon atom of <u>ent</u>-atisene compounds with respect to similar <u>ent</u>-kaurene derivatives may be due to stereochemical perturbations exerted through space by the proximity of the C-13, C-14 bridge.

Finally, comparison of the δ_{C} values of compounds $\frac{6}{2}$ and $\frac{7}{2}$ accounts for the effects caused by the isomerization of the double bond.

3069

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	<u>3</u>	4 =	5	6	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-1	39.6 ^b	39.9 ^b	39.6	39.2 ^b	39.4	40.1	11 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	18.2	17.8	18.8	18.6	18.7	18.7	20 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	42.3	35.8	38.2	38.2	38.0	38.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	33.1	37.6	43.8	43.8	43.2	43.2	2 1 10 H 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	56.4	57.0	57.1	54.0	49.1	49.3	しょちょひ。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	18.8	19.0	20.2	37.8	26.8 ^b	26.9 ^b	XH X XH
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	39.5 ^b	39.5 ^b	39.6	214.6	76.0	75.2	18 19 R ¹
9 52.9 53.0 52.0 51.8 47.1 48.4 1 COOH 10 37.8 38.4 38.2 37.8 38.0 37.4 2 CH3 11 28.7 28.6 ^C 28.2 ^b 28.1 ^C 27.9 ^C 27.8 3 CH2OH 12 36.6 36.5 36.5 35.8 36.2 35.7 4 COOMe 	8	33.5	33.5	33.3	47.4	36.6	40.8	R ¹ R ²
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	52.9	53.0	52.0	51.8	47.1	48.4	1 соон < <mark>0-а</mark> п
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	37.8	38.4	38.2	37.8	38.0	37.4	2 CH ₃ H ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	28.7	28.6 ^c	28.2 ^b	28.1 ^c	27.9 ^c	27.8	<u>3</u> сн ₂ он н ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	36.6	36.5	36.5	35.8	36.2	35.7	4 сооме н2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13d	28.7	28.8 ^c	28.7 ^b	27.6 ^c	27.6 ^c	25.9 ^b	5 сооме о
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 ^d	27.4	27.3	27.2	26.1	25.5 ^b	25.4 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	48.4	48.1	48.1	39.9 ^b	41.4	130.1	• ``H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	152.7	152.5	152.5	149.8	151.1	140.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	104.2	104.3	104.3	106.2	105.1	20.2	[[]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	33.7	26.8	28.7	28.3	28.4	28.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	21.7	65.6	177.7	176.7	177.4	177.5	ſ Ť Ħ Ť
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	13.9	14.5	11.9	11.8	11.5	11.3	くよん
CH_3CO 21.2 21.4 7	OMe	-	-	51.1	51.3	51.1	51.1	
	<u>C</u> H ₃ CO	-	-	-	-	21.2	21.4	- COOMe 7
CH <u>3C</u> O 170.1 170.5 =	Сн <u>, с</u> о	-	-	-	-	170.1	170.5	4

Table 1. ^{13}C chemical shifts^a of compounds 2-7

^aAll ¹³C chemical shifts are given in ppm relative to TMS.

^{b,c}These assignments may be reversed, but those given here are considered to be most likely.

^dThese assignments for compounds 2-5 may be also interchanged. In this skeleton the effects caused on C-13 by the C-20 Me are presently difficult to determine.

REFERENCES

- 1. M. Pinar, B. Rodríguez and A. Alemany, Phytochemistry, in press.
- 2. S. W. Pelletier and N. V. Mody, J. Amer. Chem. Soc., 99, 284 (1977).
- 3. A. A. Chalmers, C. P. Gorst-Allman and L. P. L. Piacenza, <u>Tetrahedron Letters</u> <u>1977</u>, 1665.
- See inter alia: Pimarenes: E. Wenkert and B. L. Buckwalter, J. Amer. Chem. Soc., 94, 4367 (1972). Podocarpanes: I. Wahlberg, S. O. Almqvist, T. Nishida and C. R. Enzell, Acta Chem. Scand., B29, 1047 (1975). ent-Beyerenes: C. von Carstenn-Lichterfelde, C. Pascual, R. M. Rabanal, B. Rodríguez and S. Valverde, <u>Tetrahedron</u>, 33, 1989 (1977). ent-Kaurenes: J. R. Hanson, M. Siverns and G. Savona, J.C.S. Perkin I, 1976, 114; T. Kobayashi, R. Kasai and O. Tanaka, <u>Tetrahedron Letters</u>, 1976, 1005.
- J. B. Stothers, J. R. Swenson and C. T. Tan, <u>Can. J. Chem.</u>, <u>53</u>, 581 (1975); J. B. Stothers and C. T. Tan, <u>Ibid.</u>, <u>54</u>, 917 (1976).

(Received in UK 24 May 1978; accepted for publication 15 June 1978)